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Abstract. Q2R cellular automata are shown to attain thermal equilibration in the two- 
dimensional Edwards-Andenon model of a spin glass. Some problems associated with 
equilibration at low temperatures are identified as finite-size effects. We use a thermalization 
test due to Bhatt and Young. Our results indicate the possibility of calculating Gibbs 
averages in this model by means of the QZR algorithm. A rough efficiency comparison 
with the conventional (Metropolis) Monte Carlo algorithm is also made. 

1. Introduction 

Cellular automata are discrete dynamic systems with simple evolution rules that have 
been proposed as a numerically efficient alternative for the simulation of some physical 
systems. 

In Q2R (Pomeau 1984), binary variables (S, = + I )  are located on the sites of a 
square lattice and they are flipped whenever the sum of its nearest neighbours is zero, 
so the energy E = -J X S,S, is conserved by this dynamics, making this automaton a 
possible candidate for the stimulation of the king ferromagnet in the microcanonical 
(pc )  ensemble. 

This algorithm can be implemented in multispin coding (MSC) using few logical 
operations and with no need for random numbers, so it is considerably faster than the 
usual Monte Carlo (MC) method, which simulates the canonical ensemble. Unfortu- 
nately, it is highly non-ergodic due to the fact that each spin configuration belongs to 
a cycle, so after a certain period the starting phase space point will be revisited. 

Q2R also shows a cluster period transition (Herrmann et al 1987) at EEp,= -1.75N, 
separating two phases with different dynamic behaviours. For E < E,,, there is a fraction 
of the spins that do not evolve in time. The ‘dynamic’ sites are located on compact, 
isolated clusters, embedded in a sea of fixed spins. In this phase the site periods are 
finite. For E > Ecp, the dynamics propagates to the whole lattice and the site periods 
grow with the system size. Despite this fact, the lsing ferromagnetic transition, signalled 
by the appearance of a non-zero magnetization m = (S,) and a divergent susceptibility 
x = d m / J h  at E , = - A  is well reproduced by this algorithm (Herrmann 1986, 
Moukarzel and Parga 1989) with the sole condition of taking an average over cycles. 
Other quantities, such as the local energy distribution that can be tested by means of 
a temperature measurement (Lang and Stauffer 1987), are affected by the non-ergodicity 
and only give correct results when pc configurations are taken as starting points for 
the simulation (Moukarzel 1989). 

Concerning the numerical efficiency of this algorithm, it has been shown (Zabolitzky 
and Herrmann 1988) to need, at T =  T,, roughly 10 times more updates than the MC 
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algorithm in order to travel the same distance in phase space, but even taking this into 
account, Q2Rstill wins by a factor two with the'codes used by Zabolitzkyand Herrmann. 
Notwithstanding this fact, the capabilities of this algorithm for simulations have not 
been thoroughly explored, and the attention was mostly centred on its dynamic 
properties (Stauffer 1990, Stanley et al 1987, Costa and Herrmann 1987, Herrmann et 
al 1987). All this refers to the homogeneous Q2R where J is a constant. 

Nothing is known about the performance of Q2R for p c  simulations of spin glasses, 
i.e. magaeiic sysiems such ihai the coupiings J are noi constant but quenched random 
variables, chosen with a given distribution (Binder and Young 1986). 

In principle, there are reasons to doubt about the usefulness of this pc algorithm 
to simulate spin glass systems. This is so not only because of the ergodicity problems 
of this automaton but also because of the existence of a complicated free energy 
landscape in the spin glass. 

However, as we shall sbnw, the ergodicity problems a.re !ens severe !hac in ?he 
purely ferromagnetic case. In fact, the fraction of sites that remain frozen after many 
steps of the ferromagnet Q2R dynamics drops to zero only above and energy threshold, 
which goes to zero when the system size is increased, as in bootstrap percolation 
(Stauffer 1990). This phenomenon does not occur in spin glass Q2R where that fraction 
becomes zero at all energies (except for the ground state energy). This property suggests 
the existence of large cycles at almost all energies in the spin glass case. This in turn 
might imply that given a non-typical initial configuration the system will equilibrate, 
reaching, somewhere along the cycles, configurations that are typical at the energy 
considered. These would give an  adequate sampling to evaluate pc averages. 

To avoid the difficulties implied by the rough free energy landscape of spin glass 
models we studied Gibbs-averaged quantities. This does not represent a limitation 
since, as is well known, even quantities that are defined in terms of pure states can be 

pure states has its moments given by Gibbs-averaged spin correlation functions (Mezard 
et nl 1987). For a canonical simulation this implies taking the large-time limit before 
the thermodynamic limit. For the Q2R dynamics it means that one should add the 
contributions of as many equilibrated cycles as possible, obtained from independent 
initial configurations. 

From !he ahove discussion we see that !he viahility of Q2R wc simulations depends 
crucially on how well thermal equilibrium is achieved in the largest cycles. The purpose 
of this paper is to show that for a large enough system such equilibrium indeed occurs. 

The specific spin glass system we chose to analyse is the ZD Edwards-Anderson 
(EA) model (Edwards and Anderson 1975, Binder and Young 1986). For this model 
there is a single paramagnetic pure state at all finite temperatures; however, the existence 
of metastable states separated by finite free energy bamers gives rise to freezing effects 
that make the thermalization of the system difficult (Morgenstern and Binder 1980). 
The technique we used to prove that this ZD spin glass Q2R thermalizes is an adaptation 
of the one proposed by Bhatt and Young (Bhatt and Young 1985,1988a) for canonical 
simulations. Two different correlation functions that should become equal once equili- 
brium is attained are defined, As will be emphasized later, these correlations themselves 
are affected by important finite-size effects and, consequently, their numerical values 
cannot be compared directiy with the canonicai ones. "out, as we said befoie, ii is only 
the possibility of reaching equilibrium that we want to explore here. 

In the next section the ZD EA model and the Bhatt and Young thermalization test 
are briefly reviewed. In section 3 the implementation to the spin glass Q2R cellular 
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automata is discussed. Results are presented in section 4. The last section contains our 
conclusions. 

2. The EA model and the equilibration test 

The *.I EA model of a spin glass (Binder and Young 1986) is characterized by the 
Hamiltonian 

with J'= *l,quenchedrandomvariablesdrawnfrom P ( J )  = x S ( J +  1)+(  1 - x ) s ( J -  I ) .  
We will only discuss the x = f  case. 

The competition between ferromagnetic ( J  = 1) and antiferromagnetic ( J =  -1) 
ordering gives rise tofmsfrafion (Toulouse 1977). A plaquette is said to befmstrated if 
it has an odd number of negative couplings. A frustrated plaquette can never have all 
its bonds simultaneously satisfied. The ground state of the system is highly degenerate 
due to the existence of zero-energy clusters that can be inverted with no net cost of 
energy. In two dimensions there is no phase transition at finite temperature because the 
size of these zero-energy clusters is finite (Morgenstern and Horner 1982) and then the 
system, no matter how big, can be reversed by finite-energy excitations. The local order 
parameter qEA = N-' X (SO2 must then be always zero in equilibrium because ( S , )  = 0. 
Nevertheless, the topography of phase space is still complex. There are many low-energy 
valleys separated by finite free-energy barriers. Different valleys are related by the 
inversion of some of these zero-energy clusters. In single-flip dynamics, this inversion 
process takes a time that can be estimated as r -  eaAF, with A F  the free energy barrier 
the system has to overcome in order to jump from one valley to another. This r grows 
rapidly at low temperatures, so in not too long simulations the system remains confined 
in one such valley and mimics the effect of a spin glass transition at Tf- 1.0. It took 
some time to realize that no transition was really there but, rather, a dynamic effect 
called 'freezing', due to the fact that relaxation times grow beyond the observation time 
(but do  not diverge as in a real phase transition). 

In three dimensions a real spin glass transition is believed to exist (Bray and Moore 
1984, 1985, 1987; Bhatt and Young 1985, 1988a, Ogielsky and Morgenstern 1985), but 
some controversy still remains (Fisher and Huse 1986, Huse and Fisher 1987, Caracciolo 
el a1 1990, Reger et a1 1990) about the relevance that the mean field theory results 
(Mezard et al 1987) may have in finite dimensions, mainly concerning the existence or 
not of a multiplicity of pure states. 

Spin glasses are characterized by their slow dynamics due to the existence of a wide 
range of relaxation times, so the number of equilibration sweeps needed in a simulation 
is not easily determined in these systems. In fact, this number is not even uniquely 
defined, because different magnitudes take different times to equilibrate. Nevertheless, 
one could estimate such a thermalization time from, for example, the equilibration of 
the order parameter distribution P ( q ) .  Bhatt and Young (1985, 1988a) have proposed 
a method to estimate this time, which we now briefly discuss. 

First define the autocorrelation overlap as 
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where f is the number of lattice updates separating both configurations and f, is an 
equilibration time. The interesting quantity is the probability distribution 
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where T ( T K  to)  is the number of times that the autocorrelation overlap is recorded, 
so the mean separation between configurations is approximately to, and [. . .lay denotes 
an average over bond samples. 

The overlap between replicas is defined as the projection of two independent copies 
of the system, with the same realization of couplings 

and the distribution of this magnitude is calculated as 

The dimensionless ratio g is a ratio between moments of P ( q ) ,  which will be useful 
to follow the equilibration process 

Suppose we calculate g, and g, (from P,(q)  and P,(q) ,  respectively) as a function 
of f o .  For early times the autocorrelation overlap will be approximately one so P J q )  
will be highly peaked as q = 1 and g, will be near to one. On the other hand, if the 
replicas are started from independent random points in phase space, they will be 
initially decorrelated, so P J q )  will have the form of a Gaussian centred at q = 0 and 
g,=o. 

The dynamics of the system will push the replicas to certain regions of phase space, 
so, in the limit of f,+m, P,(q)  will be the equilibrium distributuon P ( q ) ,  and so will 
P=(q) in the same limit because two configurations can be regarded as independent 
when they are separated by a long time. We see then that g, will decrease and g, will 
rise towards the equilibrium value, but starting from opposite sides. 

As we shall see later on, the possibility that g, or g, is non-monotonous cannot be 
ruled out, so that, if at a certain time we have almost convergence of the two, nothing 
ensures that the equilibrium value will lie between them. For the models reported 
(Bhatt and Young 1985, 1988a, b, Reger et a /  1990) g, decreased and g, increased 
steadily in time till they met at the (temperature dependent) equilibrium value, and 
then they continued to agree (although the possibility that g behaved in a non- 
monotonous way was pointed out by the authors). In those cases when both values 
coincide the system can be regarded as equilibrated. 

3. The spin glass QZR: its numerical implementation 

A few details must be discussed before applying this method to test thermalization in 
Q2R. First, we have to define how we will relate the pc and canonical ensembles. 
Following standard statistical mechanics arguments, we expect pc averages at energy 
E to coincide with canonical ones at temperature 0-' such that (H)@ = E. This suffices 
to establish the link between ensembles in the case of homogeneous systems, hut in 
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disordered models E @ )  depends on  the sample, and might also he in the valley. In 
this case we have to specify a prescription to relate MC and Q2R simulations to each 
other. 

The valley dependence is not important as long as one is simulating finite systems 
so, in practice, just one pure state exists, and we can define E,@) uniquely for a given 
samples as its Gihbs-averaged energy. 

The sample dependence is somewhat more delicate. What one should do  to be 
rigorous is to perform the Q2R simulations at energies that depend on the sample one 
is considering, so as to make them correspond to the same temperature. In this way 
one can safely average over samples. This would require complex programming and 
a previous MC simulation on each sample that one was to use in Q2R. What we do 
instead is to define a sample-averaged E ( P )  = [E, (p) IaV and make all Q2R simulations 
at the same energy (for a fixed equivalent temperature). This approach is supported 
by the self-averageness of E and should be correct for large enough systems. 

The other point concerns the construction of the starting states for Q2R simulations. 
While in MC simulations the temperature is an external parameter, in pc simulations 
the control parameter is the energy, which is configuration dependent, so we have to 
define a method to obtain starting states of a given energy. 

Different methods could yield different results. To see this, think of the extreme 
case where our states had exactly ,.LC distribution. Then the distribution of overlaps 
between replicas would be the equilibrium one and there would be nothing to equili- 
brate. This would be the case if we used the starting states described by Moukarzel 
(1989), but that method is of no practical use in this case, due to the time needed to 
equilibrate a spin glass. 

The method we used was the following. First, all the replicas were initialized in 
random configurations. As a result their energy was very high. Afterwards their sites 
were visited at random and the spins flipped whenever the energy did not rise, until 
the desired value was reached. If, after 300*N of these spin Rip trials, any of the 
replicas did not reach the desired energy, then the whole sample was discarded and 
a new set of bonds was constructed. 

A different strategy like, for example, repeating the previous procedure a certain 
number of times before discarding the sample could have been used, but we chose 
this one for ease of programming. It has the drawback of biasing the sampling. Bond 
sets whose low-lying states are not easily reached have less probability to he accepted 
for a simulation at low energy. Anyway, we found that this point is not important for 
large lattices (the sample rejection rates were 0, 0, IO%, 60% for L= 16 at T =  1.2, 1.1, 
1.0, 0.9 and 0, 0, 0, 5% for L = 32 at the same temperatures). 

To test thermalization we ran three independent spin configurations (replicas) for 
each sample. This number was chosen in order to have the same statistics for qr and 
4.. First the replicas were updated 1, times. Then their mutual overlaps q. were recorded 
during 100 more steps, storing the configurations after each Q2R step. Afterwards we 
continued updating without further measurements up to f = 2 t o .  During the following 
100 steps, each of the replicas was projected on the corresponding stored configuration, 
so obtaining the overlaps q. between configurations separated by exactly to steps. In 
this way, and after averaging over samples, we obtain P,(q)  and P.(q) for a given 
time to. 

The average was done over 400-500 samples. The data were accumulated in four 
statistically independent groups. Error bars in the figures indicate the error estimates 
from the dispersion of the four groups. 
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4. Results 

4.1. Frozen sites 

The frozen sites at a given time f are those that have not changed their state since the 
beginning of the simulation. This magnitude is useful for determining whether the 
dynamics spreads to the whole lattice or remains confined, at a given energy. It is 
somehow related to the existence of a cluster period transition. 

We have measured the frozen fraction Fz for several energies and times for the 
ferromagnet and the spin glass. At each energy, Fz was averaged over 50 different 
starting configurations. The spin glass initial states were constructed from one ground 
state of a unique sample, obtained by careful annealing. No sample average was done 
in this case. 

In figure 1 we can see Fz versus energy for the ferromagnet and the spin glass. 

threshold can be seen to exist below which the dynamics does not spread to the whole 
lattice. This threshold has been shown to be size dependent (Stauffer 1990). Looking 
at figure 1 one can estimate its location somewhere between E = -1.7 and -1.6, for 
L = 64. The spin glass behaviour is different. In this case the threshold seems to be the 
ground state itself. In temperature terms, the spreading threshold is located at T = 0 
in the spin glass and at a finite temperature in the ferromagnet. 

This suggests that a cluster period transition could only exist at T = 0 in the spin 
glass Q2R. This would constitute an advantage of the spin glass case from the point 
of view of ergodicity. 
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Each cl?nre corresponds to a different observ-vation tirr?.. Forthe ferromzgnet, z!! energy 

Fz 

1 .o 

0.8 
FERROMAGNET SPIN GLASS 

0.6 

0.4 

0.2 

0.0 
-2.00 -1.75 -1.50 -1.25 -1.00~.  - 0 7 5  

energy 
Figure I. Fraction o f  frozen sites Venus energy per site for the Ferromagnet Q2R and spin 
glass Q2R for different observation times. These values are for an L=64 lattice. 

4.2. Temperature measurement 

The temperature can be determined (Lang and Stauffer 1987, Moukarzel 1989) in the 
wc ensemble through the local energy distribution, which must satisfy 
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We have measured the probability P(n) for a site to have local energy n in spin 
glass Q2R. From these, two independent measurements of T can be made: 

The simulations were made at energies corresponding to T =0.9, 1.0, 1.1 and 1.2. 
In figure 2 we can see that both estimates coincide with each other after an equilibration 
time that depends on temperature. 

The coincidence between measured T and T ( E )  is not always good. The differences 
are not even systematic, so we do not have a clear explanation for this. 

1.2 1 
u 

0.8 1 

A 
0 

U U C  TZ 
naaM T4 

Es E s m E X P J o  

L = 3 2  

10 10 * 10 ' 10 10 ' 10 
0.7 ' ' """I ' ' " " y l  ' ' " " " '  ' ' " " " '  ' ' ~ " ' "  

Number of updat ings 

Figore 2. Measured temperatures T2 and T4 in spin glass Q2R versus simulation time. 
Shawn are the results obtained for L = 3 2 .  The Q2R simulations were made at energies 
correspondingto T=0.9,1.0,1.1 and 1.2.Thesevaluesareinstantaneaus (nottimeaveraged) 
so they reflea the time evolution of the local energy distribution. 

4.3. Thermalization 

For L = 8  (figure 3), thermalization is not attained by QZR but at the highest tem- 
peratures. For L= 16, QZR fully thermalizes in less than 10' iterations at T =  1.2 (figure 

later. In L = 3 2  (figure 5 )  the thermalization is complete but, at T=0.9,  the lowest 
temperature we simulated, where a small crossing of g s  also appears. 

We include MC data for the same sizes and temperatures for comparison purposes. 
It is seen that MC simulation always thermalizes in less iterations. 

The crossing of g's that can be observed for L = 16 at low temperatures is due to 
the appearance, in the 400 x 3  configurations that were sampled to construct P.(q), of 
a few trapped configurations that never go far from the starting point. As a result P.(q) 
conserves, for T = 0.9 and T = 1.0, a small peak near q = 0.8 (figure 6) due to configur- 
ations that, after many updatings, are still near the starting point. 

4). At iow iemperdiures i-iossing 'letweeii & and & occurs that .w-iii 'le diseuusse~ 
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Figure 3. Dimensionless ratio g for Q2R in L = 8 spin glass versus time. The (approximate) 
equivalent temperatures are: ( a )  T=0.97, ( b )  T =  1.07, ( e )  T=1.17 and ( d )  T =  1.4. An 
average was made over 480 samples at each temperature 

I '  

Figure 4. Dimensionless ratio g for Q2R and MC algorithms versus time for L =  16 in the 
spin glass. 

Surprisingly this peak does nor raise the ratio g, but lowers it. This is unexpected 
because one ~ n o w s  a &Sin'ouiioii conceniraie: arccE& = 0.8 w,:: kzge == 1 and 
another centred at q = 0 will have q = 0, so one intuitively expects that a superposition 
of both will have a ratio g somewhere between 0 and 1. In fact, this is not true. It can 
be shown that if one adds two Gaussians, one centred at q = 0 with weight (1 - E ) ,  

and the other at Qp with weight E, the ratio g for this combined distribution may be 
negative for intermediate values of E, while being zero for E = O  and almost.one for 
E = 1 (figure 7). 

We have also verified that, within this two-Gaussian approximation, the crossing 
is well reproduced if the Gaussians are chosen so as to approximate the case of T =  1.0 
and L= 16 (figure 6), for appropriate peak weight E and peak position Q,. 
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Figure 5. The same as figure 4 for L = 32 

. 
0.0 0.2 0.4 0.6 0.8 

0.0 -L' 
" " -' " ' " -" " 6- 

I 

Figure 6. Distribution P ( q )  of autocomelation (4.1 and replica (qr) overlaps for L =  16 at 
the longest times simulated in T=O.9 and T =  1.0. The peaks of trapped configurations 
appear in P(q , )  at q -0.8. 

For L =  16 and T =  0.9, these trapped configurations lower the value of g,, making 
it similar to g, .  This results in the corresponding g graph (figure 4(d)), which suggests 
that thermalization has been attained, although looking at the corresponding P ( q )  
(figure 6) we see this not to be true. Indeed, thermalization is worse in this case than 
for T = 1.0. For L = 32 we verified that no peak of trapped configurations appeared at 
T = 1.2,l . l  and 1.0 (figure 8). For this size the coincidence of g. and g ,  was accompanied 
by a coincidence of P.(q) and P,(q)  within errors. A very small peak ( E  - 8  x lo-') 
shows up in Pa(q)  for L=32,  T=0.9, for to=5.1x104. In this case the values of g .  
and g, could again be interpreted as suggesting full equilibration while P ( q )  clearly 
shows (figure 8 ( d ) )  that ethis is not true yet. 

As mentioned earlier, the convergence of g. and g, may not be a safe indicator for 
thermalization. 
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l ' O 1 .  77 

Figure 7. Dimensionless ratio g for a superposition of two Gaussians. The first one has 
dispersion 1, weight ( 1  - E )  and is centred at 0 while the second has dispersion 0.1, weight 
e and is centred at Q,. Shown is g very Q, for several values of E. Note that for certain 
values of Qp, g(c) is nonmonotonous 

a: T = 1 . 2  

b: T-1 .1  

c :  T-1.0 

d :  T-0.9 

0.0 0.2 0.4 0.6 0.8 
9 

Figure 8. Distribution P ( q )  of autocorrelation (4.) and replica (4,) overlaps for L =  32 at 
the longest times simulated in T =  1.2, 1.1, 1.0 and 0.9. 

Our data suggest that the inability of Q2R to equilibrate is a finite-size effect, 
confined to lower temperatures as N is increased (compare figure 6 to figure 8). It is 
then to be expected that at any finite temperature the ZD spin glass Q2R will attain 
equilibrium on large enough lattices. 

Let us mention that the values of gcq obtained with MC and Q2R simulations do 
not coincide with each other. This is not a problem since the existence of a non-null 
g in the ZD EA model at finite temperature is a finite-size effect (Bhatt and Young 
1988a), and we know that finite-size effects depend strongly on the ensemble. Con- 
sequently, coincidence of gQ,, with g,, is not to be expected for finite sizes. 

We now turn to the point of the relative efficiency of Q2R and MC algorithms. Both 
Q2R and MC programs, were implemented in multispin coding. In both cases 32 lattice 
sites are simultaneously updated. 
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The MC code performs in a fully parallel fashion, including the comparison with 
a random number. The code in this case is the one described by Williams and Kalos 
(1984) with the modifications introduced by Pierre et a l  (1987). These modifications 
reside in the way in which a ,string of random bits with probability e-4p is constructed 
from the available random bits with probability 4 (f bits). The first method (Williams 
and Kalos 1984) needs too many 1 hits per site at low temperatures while the second 
one (Pierre et al 1987) performs with a (fluctuating) number of bits per site that is 
roughly temperature independent and approximately 7 (for a 32 bits word) on the 
average. A shift register with the pair (521,32) was used as a random-number generator 
(Kirkpatrick and Stoll 1981). 

The Q2R code (Herrmann 1986) is similar to the MC one, but the decision of 
flipping a spin requires less operations because no random numbers are needed and 
also because only sites with zero local field need to be identified. With this arrangement, 
the relative efficiency per 02R and MC sweep gives an approximate factor of five in 
favour of the former. 

By looking at the g-graphs one can make some very rough estimates of the number 
of lattice sweeps (tzC, t&) needed for equilibration in each case. For L =  16 we 
have (2x102,9x102) at T=1.2. For L=32  one finds (3x1O2,1.8x1O3) at T=1.2, 
(5x1O2,4xl0’)at  T = l . l  and(1.5x102,1.8x104) at T=1.0. It isapparentthat t& 
grows faster than tzc at T is decreased. For L = 32 the relative factors between them 
are 6, 8 and 12 at T =  1.2, 1.1 and 1.0. An analysis of the size dependence of this 
factors can not be made on the basis of our data. 

Taking into account than one MC sweep takes five times more CPU time than a Q2R 
one, it is found that the MC algorithm is always more efficient for equilibration at the 
temperatures we have simulated. An extrapolation to higher temperatures suggests that 
Q2R could be globally more eflicient for T >  1.3. 

5. Conclusions 

We have shown that the microcanonical algorithm Q2R is able to attain equilibrium 
in the case of a 2~ EA model of spin glasses with nearest-neighbours interactions * I .  
This is not at all obvious since the non-ergodic characteristics of Q2R in the case of 
the ferromagnet are well known (Herrmann el al 1987, Moukarzel 1989). The multi- 
plicity of ergodic phases is also a characteristic of spin glasses (but certainly with a 
different origin: in the case of Q2R it is a property of a dynamics while in the case of 
spin glasses it stems from the characteristics of the free energy surface of the model) 
so, in principle, one could expect that a combination of both would not work. The 
result Is then that non-ergodicities do not add up in this case. 

We have found here an example where the behaviour of g is non-monotonous. 
The same would happen for any dynamics that produced a P,(q) with a two-peak 
structure at intermediate times before thermalization. This might be produced, for 
example, if most configurations decorrelate in a given number t I  of iterations but a 
certain fraction E of them take a longer time, l2 >> t 1  . For f l  < 1 < I , ,  P,(q)  would have 
this two-peak structure, which could produce the effects we have described. 

All the numbers concerning equilibration times in this work have to regarded as 
rough estimates. A more precise analysis of this point as well as of its dependence on 
system size would be worthwhile, but it requires much more statistics. 
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A similar analysis would be needed in the interesting case of the three or more 
dimensional EA model where a finite temperature phase transition is believed to occur. 
Also, a multiplicity of pure states might be present in this case, and it is not known 
how these facts will affect the ergodicity of Q2R. 

From the point of view of numerical efficiency, let us note that multispin-coded 
MC needs, in three dimensions, twice as many random numbers per site as it does in 
two dimensions, while the (per site) computational efford needed in Q2R is almost 
the same in two and three dimensions (just a few more logical operations are needed 
to identify the zero-field sites). 

About 1500 CPU hours on a MicroVAX-I1 were used in this work. 
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